

Building a sustainable supply chain for magnetic rare earth materials: the REEsilience project

Prof. Dr. Carlo Burkhardt

Pforzheim University Jožef Stefan International Postgraduate School

Rare Earth as High Performance Materials

Magnets...

Co-funded by the European Union

Nd-rich phase Nd₂Fe₁₄B Non-magnetic, "insulating" "hard magnetic φ phase"

Rare Earth as High Performance Materials

Microstructure...

Microstructure of sintered NdFeB magnets

(Hard-)magnetic grains (Nd₂Fe₁₄B)

• magnetically coupled

Neodymium-rich intergranular Phase for insulation

• magnetically decoupled

Typical base alloy : Nd_{15-x}Fe₇₇B₈ (x= alloying additions e.g. Dy, Tb, Zr, Ga ...)

the European Union

150/0 Up to 150/0 more efficient than induction motors.

Permanent magnet motors are the most power-dense type of traction motor commercially available, both in kW/kg and in kW/cm3

Source : Adamas Intelligence

Permanent Magnets (NdFeB-type)

Mercedes AMG, 320 kW

Tesla Model 3, 320 kW

95% of electric cars use permanent magnet motors

Rare Earth: Critical Raw Materials

Source: Foresight On Critical Raw Materials For European Industry, Joint Research Centre of the European Union, Luxembourg, 202

Electric SUVs can contain up to 5kg of NdFeB

Offshore wind turbines can contain up to 10-12 tonnes of NdFeB

ience

REEsi

Rare Earth: European Strategy

• Supporting mining project in Europe and in "reliable partner countries"

→ Canada, Australia, Indonesia, Namibia [...]

• Supporting strategic investments over the whole value chain

→ mining, refinery, metal making, magnets making, recycling

• Critical raw materials act (14.11.2023)

domestic capacities along the strategic raw material supply chain to be reached by 2030:

- → **10%** of the EU's annual needs for extraction
- → 40% of the EU's annual needs for processing
- 25% of the EU's annual needs for recycling

Rare Earth Magnets and Motors: A European Call for Action

A report by the Rare Earth Magnets and Motors Cluster of the European Raw Materials Alliance

The REEsilience project: Main activities and expected results

• Meeting rising demand

- Securing a resilient and sustainable REE supply
- > Establishing a circular economy for RE magnets through consistent increase of recycling rates
- > Bringing transparency into the material flow
- Increasing EU production figures
- Developing magnets with enhanced functionalities
- Creating jobs over the whole supply chain
- Developing a concept to educate magnets experts
- Dissemination, Exploitation and Communication

The REEsilience project: Main activities and expected results

REEsilience: Brief introduction to the consortium

Nu.	Acronym	Organisation	Туре	Country
1	HSPF	Pforzheim University	Academia	Germany
2	SEZ	Steinbeis Europa Zentrum	Tech Transfer	Germany
3	JSI	Jožef Stefan Institute	RTO	Slovenia
4	ULEI	University of Leiden	Academia	Netherlands
5	VLO	VALEO	Industry	France
6	RISE	Research Institutes of Sweden	RTO	Sweden
7	INS	Inserma Anoia	SME	Spain
8	МКР	Mkango Polska	Industry	Poland
9	KOL	Kolektor Group	Industry	Slovenia
11	TUBAF	Bergakademie Freiberg	Academia	Germany
12	HMG	Hypromag GmbH	SME	Germany
13	DUK	Danube University Krems	Academia	Austria
14	TUD	Delft University	Academia	Netherlands
15	CAR	Carester	SME	France
16	REIA	Rare Earths Industry Association	Association	Belgium
17	UoB	University of Birmingham	Academia	UK
18	HML	HyProMag Ltd	SME	UK

Mapping of sources

Primary sources

e.g., monazite, bastnasite, loparite, xenotime, ionabsorption clays, etc.

Primary sources

- Current database
 - 715 total non-Chinese sources (749 when including Chinese)
 - 148 non-Chinese sources with resource data (28 European)
 - 567 non-Chinese sources without resource data (80 European)
 - 14 non-Chinese processing facilities (19 when including Chinese)

Secondary sources

Current database

So far over 180 magnet containing applications, ranging from audiomodules in smartphones to wind turbine magnets have been dismantled and analysed for recyclability

800

700

600

500

400

300

200

100

0

Number of sources in the database

487

80

Chinese sources without

Other non-chinese sources

without resource data

European sources without

Other non-chinese sources

with resource data

European sources with resource data

resource data
Chinese sources with

resource data

resource data

Co-funded by the European Union

Rare Earth Recycling

Long loop vs. short loop

Rare Earth Recycling

Short loop/Direct/HPMS recycling

Technical issues

Other technology metals (Ag, Pt, Pd) have recycling rates of ~30%

- Recycling rate of Nd is **<1%**
 - \rightarrow Large diversity of End-of-Life Magnets:
 - SmCo, Ferrite, NdFeB....
 - no design for recycling
 - \rightarrow Underdeveloped recycling schemes

Technical issues

Other technology metals (Ag, Pt, Pd) have recycling rates of ~30%

• Recycling rate of Nd is <1%

 \rightarrow Magnet content in products is often low

Technical issues

Other technology metals (Ag, Pt, Pd) have recycling rates of ~30%

shredding

- Recycling rate of Nd is **<1%** •
 - \rightarrow Current shredder processes are not suitable for recycling NdFeB

Magnetic material

Automated disassembly

Automated disassembly

Design for Recycling Guide

• Creation of a D4R guide; evaluation of different design solutions for performance vs. cost vs. recyclability

 \rightarrow Carried out in close-cooperation with Tier1 and OEM

Co-funded by the European Union

Tyseley Energy Park (UK)

Tyseley Energy Park (UK)

Delivery and commissioning of Alignment Presses

$\langle \odot \rangle$

Delivery of Sintering Furnace

Pforzheim (GER)

Pforzheim (GER)

Blending of Materials (Pre-Trials)

- Blending of different feedstock, understanding of minor additions (e.g. grain boundary wetting agents) •
- Sintering Temperature and Profile Trials •

1.2

0.8

0.6

0.4

0.2

0

0

-500

 \vdash

Magnetisation

Development of more sustainable magnet production routes

- Development and testing of non-consumables inert anodes for ۲ sustainable electrowinning of RE-metals
- Redesign of the grain boundary phase, using low-eutectic alloys ٠

Curriculum "Magnet's expert"

Credit Framework (ECTS)

Total number of ECTS for the second-cycle study programme	120 ECTS
Required Courses	55 ECTS
Elective Courses	20 ECTS
Individual Research/Project Work	15 ECTS
Master Thesis	30 ECTS

1st YEAR (50 ECTS)

Required Courses (30 ECTS)

- Introduction to Magnets (5 ECTS)
- Fundamentals of Raw Materials, refining and alloys (10 ECTS)
- Fundamentals of Magnets production (10 ECTS)
- Seminar I (5 ECTS)

Elective Courses (20 ECTS)

- Magnet simulations and applications (10 ECTS)
- Reuse, recycling and circular economy (10 ECTS)
- Life Cycle Assessment and Techno-Economic Assessments (10 ECTS)

2nd YEAR (70 ECTS)

Required Courses (25 ECTS)

- Innovation, Creativity and Intercultural competences
- Leadership skills, entrepreneurship
- Seminar II (5 ECTS)

Project: Individual Research/Project Work (15 ECTS)

Master Thesis (30 ECTS)

• Forming a consortium to roll out the curriculum

Thank you very much for your kind attention!

Prof. Dr. Carlo Burkhardt

Pforzheim University Jožef Stefan International Postgraduate School

www.reesilience.eu

REEsilience

@REEsilience1

carlo.burkhardt@hs-pforzheim.de

